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ABSTRACT
This paper examines and estimates the three GARCH(1,1) models (GARCH, EGARCH
and GJR-GARCH) using daily price data. Two Asian stock indices KLCI and STI
were studied using daily data over a 14-years period. The competing models include
GARCH, EGARCH and GJR-GARCH using the Gaussian normal, Student-t and
Generalized Error Distributions. The estimates showed that the forecasting performance
of asymmetric GARCH Models (GJR-GARCH and EGARCH), especially when fat-
tailed densities are taken into account in the conditional volatility, are better than
symmetric GARCH. Moreover, it was found that the AR(1)-GJR model provides the
best out-of-sample forecast for the Malaysian stock market, while AR(1)-EGARCH
provides a better estimation for the Singaporean stock market.

Keywords: ARCH-Models, Asymmetry, Stock market indices and volatility modeling
JEL classification: G14;C13;C22.

INTRODUCTION

Traditional regression tools have shown their limitation in the modeling of high-frequency
(weekly, daily or intra-daily) data. The assumption that only the mean response changes
with covariates, while the variance remains constant over time has often revealed to be
unrealistic in practice. This fact is particularly obvious in series of financial data where
clusters of volatility can be detected visually. Indeed, it is now widely accepted that
high frequency financial returns are heteroskedastic.

Modeling financial time series is not an easy task because they possess some special
characteristics (Tsay, 2002). They often exhibit volatility clustering (i.e. large changes
tend to be followed by large changes and small changes by small changes), leptokurtosis
(i.e., the distribution of their returns is fat tailed) and leverage effect (i.e. changes in
stock prices tend to be negatively correlated with changes in volatility which implies
volatility is higher after negative than after positive shocks of the same magnitude). In
order to capture the first two characteristics of financial time series, Engle (1982) proposed
to model time-varying conditional variance with the Auto-Regressive Conditional
Heteroskedasticity (ARCH) processes that use past disturbances to model the variance
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of the series. Early empirical evidence shows that high ARCH order has to be selected
in order to catch the dynamics of the conditional variance. The Generalized ARCH
(GARCH) model of (Bollerslev, 1986) is an answer to this issue. It is based on an
infinite ARCH specification and it allows reducing the number of estimated parameters
from      to only 2. Both models allow taking the first two characteristics into account,
but their distributions are symmetric and therefore fail to model the third stylized fact,
namely the "leverage effect". To solve this problem, many nonlinear extensions of the
GARCH model have been proposed. The widespread models include the Exponential
GARCH (EGARCH) of (Nelson, 1991) and the so-called GJR (Glosten, Jagannathan,
& Runkle, 1993).

Unfortunately, GARCH models often do not fully capture the thick tails property of
high frequency financial time series. This has naturally led to the use of non-normal
distributions to better model this excess kurtosis, such as Student-t distribution,
generalized error distribution, Normal-Poisson, Normal-Lognormal and Bernoulli-
Normal distributions. Liu and Brorsen (1995) introduced the use of an asymmetric stable
density to capture the skewness property well. However, since the variance of such a
distribution rarely exists, it is not popular in practice. Bollerslev (1986) introduced the
Student-t distribution, which captures the kurtosis for heavy tailed data. Lambert &
Laurent (2001) extended this to the GARCH model.

We have selected the Strait Times Index in Singapore (STI) and Kuala Lumpur
Composite Index in Malaysia (KLCI) to investigate the behaviour of both markets. Pan
et al. (1999) and Kim (2003) studied the GARCH effects to examine linkages between
the U.S. and five Asian-Pacific stock markets (Australia, Hong Kong, Japan, Malaysia,
and Singapore). Choudhry (2005) investigated the effects of the Asian financial crisis
of 1997-1998 on the time-varying data of 10 firms each from Malaysia and Taiwan. A
recent study by Cheong et al. (2007), investigates the long-memory behavior of the
Malaysian Stock Exchange. While the research on evaluating each volatility model has
been very versatile since the introduction of ARCH model by (Engle, 1982), there has
been much less effort in comparing alternative density forecast models. However, another
striking characteristic of high-frequency financial returns is that they are often
characterized by fat-tailed distribution. In fact, the kurtosis of most asset returns is higher
than three, which means that extreme values are observed more frequently that for the
normal distribution. While the high kurtosis of the returns is a well-established fact, the
situation is much more obscure with regard to the symmetry of the distribution. Many
researchers have not observed anything special on this aspect, but others (Simkowitz &
Beedles, 1980), (Kon, 1984) and (So, 1987) have highlighted the heavy tailed distribution.
Mittnik and  Paolella (2001) have shown that a fat-tailed distribution is required for
modeling several daily exchange rate returns of East Asian currencies against the US
dollar.

However, in this paper we demonstrate that this gap can be filled by a rigorous
density forecast comparison methodology. We compare the performance of the GARCH,
EGARCH and GJR-GARCH models and also introduce different densities (Normal,
Student-t and GED).
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EMPIRICAL METHODOLOGY

ARCH-Models
Over the past two decades, enormous effort has been devoted to modeling and forecasting
the movement of stock returns and other financial time series. Seminal work in this area
of research can be attributed to Engle (1982), who introduced the standard Autoregressive
Conditional Heteroskedasticity (ARCH) model. Engle's process proposed to model time-
varying conditional volatility using past innovations to estimate the variance of the
series as follows:
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where εt  denotes a discrete-time stochastic  taking the form of  εt = ztσt where zt ~ iid
(0,1), and σt is the conditional standard deviation of return at time t, assuming that
market returns follow AR(p) process as given below:
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GARCH
Further extension introduced by Bollerslev (1986) known as the Generalized ARCH
(GARCH) model which suggest that the time-varying volatility process is a function of
both past disturbances and past volatility. The GARCH model is an infinite order ARCH
model generated by:
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where α0, α and β are non-negative constants. For the GARCH process to be defined,
it is required that  α > 0.

EGARCH
The first asymmetric GARCH model that is looked at is the EGARCH model of Nelson
(1991), which looks at the conditional variance and allows for the asymmetric relation
between stock returns and volatility changes. Nelson indicates that by including an
adjusting function g(z) in the conditional variance equation, it in turn becomes expressed
as:
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where t t tz ε σ=  is the standardized residual series.
The value of g(zt) is a function of both the magnitude and sign of zt
and is expressed as:
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Notice moreover that E|zt| depends on the assumption made on the unconditional
density. This aspect is discussed further in Section 3. The EGARCH model differs from
the standard GARCH model in two main aspects. First, it allows positive and negative
shocks to have a different impact on volatility. Second, the EGARCH model allows
large shocks to have a greater impact on volatility than the standard GARCH model.

GJR-GARCH
This model is proposed by Glosten, Jagannathan, and Runkle (1993). The generalized
form is given by:

∑ ∑
= =

−−

−

−−
+++=

q

i

p

j
jtjtititit

Sw
1 1

22

1

2

10

2 )( σβεεαασ         (6)

where  tS −   is a dummy variable.

In this model, it is assumed that the impact of  2
tε  on the conditional variance  2

tσ

is different when   tε  is positive or negative. It is for this reason that the dummy variable

tS − takes the value '0' (respectively '1') when ε is positive (negative). It is worth noting
that the TGARCH model of (Zakoian, 1994) is very similar to GJR but TGARCH
models the conditional standard deviation instead of the conditional variance.

 DENSITIES ASSUMPTIONS
The GARCH models are estimated using the maximum likelihood (ML) methodology1

. The logic of ML is to interpret the density as a function of the parameters set, conditional
on a set of sample outcomes. This function is called the likelihood function.
Failure to capture the fat-tails property of high-frequency financial time series has led to
the use of non-normal distributions to better model excessive third and fourth moments.
The most commonly used are the normal distribution, Student t-distribution2, and the
Generalized Error Distribution (GED)3.

Since it may be expected that excess kurtosis and skewness displayed by the residuals
of conditional heteroscedasticity models will be reduced when a more appropriate
distribution is used, we consider three distributions in this study: the Normal, the
Student-t and the Generalized Error Distribution (GED).

1 GARCH models can also be estimated by the Quasi Maximum Likelihood (QML) method introduced
by (Bollerslev & Wooldridge, 1992) and by the Generalized Method of Moments (GMM) suggested
and implemented by (Glosten, Jagannathan, & Runkle, 1993).
2 Suggested by Bollerslev (1987); Baillie and Bollerslev (1989) and Beine, Laurent, and Lecourt
(2000).
3 Suggested by Nelson (1991) and Kaiser (1996).
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Gaussian
The normal distribution is the most widely used when estimating GARCH models. The
log-likelihood function for the standard normal distribution for the stochastic process
of innovations given by (1) is represented as:
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where T is the number of observations.

Student-t
For a Student-t distribution, the log-likelihood is:
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where   is the degrees of freedom,                    and  Γ(·)  is the gamma function.

Generalized Error Distribution (GED)
Skewness and kurtosis are important in financial applications in many aspects such as
(in asset pricing models, portfolio selection, option pricing theory, Value-at-Risk and
others). Therefore, a distribution that can model these two moments is appropriate, the
GED log-likelihood function of a normalized random error is:
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and v   is a positive parameter governing the thickness of the tails of the distribution.
Note that for  v=2, constant  λ =1, the GED is equal to the standard normal distribution.
For more details about the generalized error distribution, see Hamilton (1994).

DATA  AND METHODOLOGY
Data
All data are the daily data obtained from DataStream. In the database, the daily return
Rt consisted of daily stock closing price Pt, which is measured in local currency4 . Our
measurements include Singapore's Strait Times Index (STI) and Malaysia's Kuala Lumpur
Composite Index (KLCI).

82 < ν =

4 The stock returns were measured in local currency just as (K. H. Bae & Karolyi, 1994) and (K.-H. Bae &
Andrew Karolyi, 1995) did in their studies. On the other hand, the stock returns in (Ng, 2000) is denominated
in US dollars. Note that when market returns are denominated in US dollars, international investors are
assumed to be unhedged against foreign exchange risk. However, (Dumas & Solnik, 1995) and (De Santis
& Gerard, 1998) insist the importance of currency risk on stock markets. Thus, we assume that the investors
are hedged against it.
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The sample consisted of 3,652 daily observations on stock returns of the KLCI
and the STI indices. It covers a fourteen-year period, beginning from 2 January 1991
and ending on 31 December 20045 . For illustrative purposes, Figure 1 compares the
two indices' daily closing values taken across the sample period. Furthermore, Figure
2 looks at the behavior of the KLCI and STI returns, respectively, over the sample
period. The data of stock price exhibit large fluctuations during the whole period. The
indices prices are transformed into their returns so that we obtain stationary series.
The transformation is as given below;

Rt = ln[(Pt) / ln(Pt-1)]    (10)

5 All the data were supplied by Datastream.
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Fig.1: KLCI and STI Daily Closing Prices 2 January 1991- 31 December 2004

Fig.2: KLCI and STI Returns  2 January 1991- 31 December 2004
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The descriptive statistics of both indices in Table (1) over the sample period highlights
the following:
• Mean returns for the STI Index is slightly larger than the KLCI, whereas, the non-

conditional variance for the KLCI Index is larger than the STI.  Furthermore, there
is evidence of volatility clustering (See figure 2) and that large or small asset price
changes tend to be followed by other large or small price changes of either sign
(positive or negative). This implies that stock return volatility changes over time.
Furthermore, the figures indicate a sharp increase in volatility starting from the year
1997.

• The returns for both indices are positively skewed. The null hypothesis for skewness
coefficients that conforms to a normal distribution's value of zero has been rejected
at the 5 percent significance level.

• The returns for both indices also display excess kurtosis. The null hypothesis for
kurtosis coefficients that conform to the normal value of three is rejected for both
indices.

• The high values of Jarque-Bera test for normality decisively rejects the hypothesis
of a normal distribution.

•  Moreover, Engle (1982) LM test indicates the presence of ARCH processes in the
conditional variance. Both indices show signs of heteroskedasticity in the sample,
indicating the legitimacy of using ARCH/GARCH type models.

The statistical results for both indices appear to have very similar characteristics.
They both display positive skewness, were found to be deviating from normality, and
display a degree of serial correlation. These stylized results are consistent with previous
empirical work on the Asian-Pacific markets6and similar to a number of previous
empirical works on matured markets7 .

Finally, if we look at the sample, given the fact that the return series exhibited some
excess kurtosis, it can also be predicted that a fatter-tailed distribution such as the student-

6 See, (S. J. Kim, 2003), Ng. A. (2000).
7 (Fama, 1976) showed that the distribution of both daily and monthly returns for the Dow Jones departs
from normality, and are skewed, leptokurtic, and volatility clustered. Furthermore, (D. Kim & Kon, 1994)
found the same for the S&P 500

Table 1: Summary Statistics for daily returns 1 January 1991-31 December 2004

Sample  Mean St. Dev. Skewness Ex- Q(20) Q2(20) J.Bera ARCH(2)
Kurtosis

KLCI 3652 0.0163 1.5731 0.5156 40.7437 105.69 1826.321 25255 580.8460
STI 3652 0.0216 1.2908 0.2884 11.2086 101.39 952.0316 19150 101.1180

J-Bera  is the Jarque and Bera (1987) test for normality, ARCH(2) refers to Engle (1982) LM
test for presence of ARCH at lag 2
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t, or maybe a GED, should generate better results than just simply a normal distribution
or a more complex asymmetric student-t.

 EMPIRICAL RESULTS

Estimation and diagnostic
The quasi maximum likelihood approach is used to estimate the three models in equations
(3), (4) and (6), with the three underlying error distributions. We consider ARCH (q)
errors for q = 1, 2, 3, and 4, for the purpose of comparison. The lag length was selected
according to the commonly used lag length selection criteria AIC and BIC. Low-order
lag lengths were found to be sufficient to model the variance dynamics over very long
sample periods8 .

This section presents the estimation results and the validity, post estimation tests, of
the estimated model. Tables 2, 3 and 4 present the estimation results for the parameters

8 (French, Schwert, & Stambaugh, 1987) analyzed daily S&P stock index data for 1928-1984 for a total of
15,369 observations and required only four parameters in the conditional variance equation (including the
constant).

Table 2: Estimation Statistics-Distributions Comparison  AR(1)-GARCH Model
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Malaysia Singapore
Normal Student-t GED Normal Student-t GED

ϕ0 0.04563 0.018806 0.005157 0.03876 0.019358 0..015127
(0.0156) (0.013) (0.0152) (0.0159) (0.0147) (0.0140)

ϕ1 0.176251 0.150871 0.112706 0.135218 0.127392 0.090214
(0.0179) (0.0170) (0.0237) (0.0181) (0.0173) (0.0195)

α0 0.021963 0.02101 0.036622 0.037439 0.030273 0.051645
(0.00407) (0.0049) (0.00767) (0.00657) (0.00713) (0.0104)

α     1 0.10164 0.078454 0.132121 0.127884 0.084825 0.0137722
(0.00972) (0.0107) (0.0169) (0.0125) (0.0121) (0.0175)

β1 0.088967 0.842576 0.85267 0.854878 0.842505 0.833316
(0.00967) (0.0194) (0.0165) (0.0128) (0.0209) (0.0191)

v 4.241789 1.096725 1.24425
(0.3307) (0.0361) (0.0396)

Asymptotic heteroskedasticity-consistent standard errors are given in parentheses.
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Table 3: Estimation Statistics-Distribution Comparison AR(1)-EGARCH Model
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Malaysia Singapore
Normal Student-t GED Normal Student-t GED

ϕ0 0.039446 0.007716 0.001398 0.009178 -0.00026 0.000639
(0.0155) (0.0137) (0.0124) (0.0160) (0.0429) (0.0139)

ϕ1 0.167528 0.148854 0.119731 0.136472 0.128629 0.092575
(0.0171 (0.0165) (0.233) (0.0174) (0.0176) (0.0148)

α0 0.011857 -0.04131 0.01857 0.014674 -0.03072 0.016111
(0.00220 (0.00707) (0.00425) (0.00285) (0.0113) (0.00403)

α 1 0.160060 0.176339 0.198965 0.198497 0.188372 0.211591
(0.0126) (0.0197) (0.0232) (0.0163) (0.0245) (0.0233)

β1 0.990215 0.974307 0.982273 0.978938 0.966408 0.973411
(0.00188) (0.00574) (0.00421) (0.00367) (0.00751) (0.00597)

g -0.28794 -0.28878 -0.27707 -0.31462 -0.28956 -0.28998
0.0453 (0.0523) (0.0544) (0.0448) (0.0570) (0.00543)

v 4.181703 1.1.7278 5.798267 1.261971
(0.3161)) (0.0365) (1.6173) (0.0396)

Asymptotic heteroskedasticity-consistent standard errors are given in parentheses.

Table 4: Estimation Statistics-Distributions Comparison AR(1)-GJR Model
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Malaysia Singapore
Normal Student-t GED Normal Student-t GED

ϕ0 0.19303 0.003455 5.653E-6 0.013754 0.004819 0.00199
(0.0160) (0.0142) (0.00165) (0.163) (0.0151) (0.0140)

ϕ1 0.18286 0.1566 0.116387 0.141688 0.12999 0.095103
(0.0178) (0.0167) (0.0234) (0.0178) (0.0171) (0.0181)

α0 0.021062 0.022501 0.036813 0.036575 0.03107 0.050256
(0.00374) (0.00507) (0.00751) (0.00628) (0.00703) (0.00982)

α 1 0.13262 0.116718 0.185545 0.166968 0.120471 0.186991
(0.0134) (0.0161) (0.0255) (0.0169) (0.0177) (0.0242)

β1 0.00922) (0.0199) (0.0163) (0.0121) (0.0202) (0.0179)
ϖ1 -0.8089 -0.07259 -0.11386 -0.10247 -0.07149 -0.11188

(0.0125) (0.0142) (0.0232) (0.0157) (0.0156) (0.0223)
v 4.329078 1.111723 5.829943 1.265056

(0.3285) (0.0366) (0.5414) (0.0404)

Asymptotic heteroskedasticity-consistent standard errors are given in parentheses.
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for the GARCH, EGARCH and GJR-GARCH models respectively, while Tables 5-7
reports some useful in-sample statistics. Some comments can be made on these results:
• The use of asymmetric GARCH models seems justified. All asymmetric coefficients

are significant at standard levels. Moreover, the Akaike information criteria (AIC)
and the log-likelihood values highlight the fact that EGARCH or GJR models better
estimate the series than the traditional GARCH.

• As is typical of GARCH model estimates for financial asset returns data, the sum of
the coefficients on the lagged squared error (α1) and the lagged conditional variance
(β1) are close to unity (0.99 and 0.98) with the normal and GED error term for
KLCI and STI respectively. This implies that shocks to the conditional variance
will be highly persistent, indicating that large changes and small changes tend to be
followed by small changes, this mean volatility clustering is observed in both KLCI
and STI financial returns series.

• Regarding the densities (Tables 5-7), the symmetric distribution with fatter tails
(Student-t and and GED distributions) clearly outperform the Gaussian. Indeed, the
log-likelihood function strongly increases when using fatter tailed distribution. Using
the Student-t leads to BIC criteria of 3.09 and 3.04 with the Gaussian versus 2.98
and 2.97 with the non-normal densities, for the KLCI and the STI respectively
using AR(1)-GARCH, and similar results for both AR(1)-EGARCH and AR(1)-
GJR .

• All the models seem to do a good job in describing the dynamics of the first two
moments of the series as shown by the Box-Pierce statistics for the squared
standardized residuals with lag 20 which are all non-significant at 5% level.

• LM test for presence of ARCH effects at lag 2, indicate that the conditional
heteroskedasity that existed when the test was performed on the pure return series
(see Table 1) are removed for GARCH but remains for EGARCH and GJR using

Table 5: Diagnostics statistics -Distributions Comparison AR(1)-GARCH Model

Malaysia Singapore
Normal Student-t GED Normal Student-t GED

Q2(20) 17.380 14.343 11.673 13.250 13.044 12.801
(0.628) (0.813) (0.927) (0.866) (0.875) (0.886)

ARCH(2) 2.924836 0.549214 0.032969 0.815931 1.128814 1.046473
(0.053799) (0.577451) (0.967569) (0.442308) (0.323530) (0.351280)

AIC 3.088865 2.969216 2.976918 3.044102 2.966946 2.968075
BIC 3.095661 2.977711 2.985413 3.050898 2.975440 2.976570
Log-Like -5585 -5389 -5393 -5523 -5385 -5400

Q2(20) are the Box-Pierce statistic at lag 20 of the squared standardized residuals. P-values of are
given in parentheses. AIC,BIC and Log-Like are the Akaike Information criterion, Swartz
information criterion  and Log-Likelihood value respectively.



Modeling and Forecasting Volatility of the Malaysian and the Singaporean Stock

93Malaysian Journal of Mathematical Sciences

the Gaussian distribution. EGARCH and GJR models with student-t and GED
distributions shows that the conditional heteroskedasity are successfully removed
which are all non-significant at 5% level. From the previous, GARCH model
performs better with Gaussian distribution. However, EGARCH and GJR models
give better results with fatter tailed distributions.

• Similar to the results found in various markets, the leverage effect term w1<0  in the
GJR  and g < 0 in the EGARCH are statistically significant at levels (p-value equal
0.01 and 0.05 respectively) with negative sign, as expected. The negative shocks
imply a higher next period conditional variance than positive shocks of the same
sign, indicating that the existence of leverage effect is observed in returns of the
KLCI and STI stock market index.

• However, the comparison between models with each density (normal versus non-
normal) shows that, according to the different measures used for modeling the
volatility, the GJR-GARCH model with student-t provides the best in-sample
estimation for KLCI having slight difference with EGARCH and clearly outperforms
the symmetric models. No clear results can be obtained for the STI, where EGARCH
and GJR with student-t provides a very close result (same Log-Like -5369). Figures
3 and 4 draws the behavior of the conditional variance for both models .

Table 6: Diagnostics statistics -Distributions Comparison AR(1)-EGARCH Model

Malaysia Singapore
Normal Student-t GED Normal Student-t GED

Q2(20) 30.803 11.960 12.845 12.311 12.666 12.443
(0.058) (0.917) (0.884) (0.905) (0.891) (0.900)

ARCH(2) 10.01139 1.960507 2.301999 2.480221 1.647911 2.046106
(0.000046) (0.140935) (0.100204) (0.038866) (0.192595) (0.129386)

AIC 3.082735 2.961012 2.969516 3.035179 2.960053 2.960535
BIC 3.091229 2.971205 2.979709 3.043674 2.970246 2.970728
Log-Like -5575 -5375 -5378 -5503 -5369 -5382

            Table 7: Diagnostics statistics -Distributions Comparison AR(1)-GJR Model

Malaysia Singapore
Normal Student-t GED Normal Student-t GED

Q2(20) 20.424 13.503 11.944 12.496 18.124 12.550
(0.432) (0.855) (0.918) (0.898) (0.579) (0.896)

ARCH(2) 4.5840 1.1092 0.1454 0.814720 0.706989 1.460312
(0.0103) (0.3299) (0.8647) (0.442844) (0.493194) (0.232300)

AIC 3.076357 2.962434 2.967911 3.030473 2.958600 2.967269
BIC 3.086506 2.979803 2.970422 3.040646 2.970493 2.971731
Log-Like -5561 -5370 -5375 -5497 -5369 -5384

Q2(20) are the Box-Pierce statistic at lag 20 of the squared standardized residuals. P-values of are given
in parentheses. AIC,BIC and Log-Like are the Akaike Information criterion, Swartz information criterion
and Log-Likelihood value respectively.
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Fig.3:The STI Returns, Residuals and Conditional Variance AR(1)-GJR Model

Fig.4: The KLCI Returns, Residuals and Conditional Variance AR(1)-GJR Model
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Forecasting Evaluation
The one-step-ahead forecast of the conditional variance is easy to obtain. First we rewrite
equation (3) and update ht by one period,

 2
1 0 1 1t t th hα α ε β+ = + +       (11)

Since 2

t
ε   and ht are known in period t, the one-step-ahead forecast is simply

tt
h

1

2

10
βεαα ++ . It is only somewhat more difficult to obtain the j-step-ahead forecasts.

To begin, use the fact that 
ttt

hv22 =ε so that 
jtjtjt

hv
+++

= 22ε  . If we update by j periods

and take the conditional expectation of each side, it should be clear that

)( 22

jtjttjtt
hvEE

+++
=ε  . Since vt+j is independent of ht+j and 12 =

+ jtt
vE   , it follows that

2
1 1t t tE hε + +=       (12)

We can use (12) to obtain the forecasts of the conditional variance of the GARCH (1,1)

process. Updating (11) by j periods, 
11

2

110 −+−++
++=

jtjtjt
hh βεαα  and taking the

conditional expectation,

  11

2

110 −+−++
++=

jttjttjtt
hEEhE βεαα .If we combine this relationship with (12), it is

easy to verify that  0 1 1 1( )t t j t t jE h E hα α β+ + −= + +       (13)

Given ht+1, we can forecast all subsequent values of the conditional variance as:

t

jj

jtt
hhE )(])(...)()(1[

11

1

11

2

11110
βαβαβαβαα +++++++++= −

+  .

If   α1 +  β1 < 1, the conditional forecasts of  ht-j will converge to the long-run value
Eht = α0 / (1- α1 -  β1).

Similarly, we can forecast the conditional variance of the ARCH (q) process using the
following equation:

 2 2
1 0 1 1 ...t t q t qh α α ε α ε+ − −= + + +       (14)

Updating (14) by one period,  2

1

2

101
...

+−+
+++=

qtqtt
h εαεαα

As mentioned above, at period t, we have all of the information necessary to calculate
the value of ht+1  for any GARCH process. Now, if we update (14) by two periods and

take the conditional expectation, we have  2

2

2

1102
...

+−++
+++=

qtqtttt
EhE εαεαα

Since Et
2

1+tε  = ht+1,  it follows that 2

21102
...

+−++
+++=

qtqttt
hhE εααα

It is clear from the preceding that it is possible to obtain the j-step-ahead forecasts of the
conditional variance recursively. As the value of j →∞ , the forecasts of ht+j should
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converge to the unconditional mean E 2
1+tε = α 0 / (1- α 1 - α 2 - …- α q) .

It should be clear that a necessary condition for convergence is for the roots of the
inverse characteristics equation 1-a1L - …-  aq L

q to lie outside the unit circle. This is a
necessary condition for the long-run mean to have the representation   a0 / (1- Sa i). To
ensure that the variance is always positive, it is necessary that   a0 > 0 and α i ≥ 0 for
i ≥ 1.

Since the conditional variance has been estimated, the obvious question is how
good are the models for forecasting future conditional variance? Typically, there are
several plausible models that we can select to use for our forecast. It is fallacious to
conclude that the one with the best fit is the one that gives the best forecast. To assess
the performance of the GARCH models candidates in forecasting the conditional
variance, we compute 5 statistical measures of fit:

• Mean Squared Errors (MSE)
• Mean Absolute Error (MAE)
• Mean Absolute Percentage Error (MAPE)
• Theil Inequality Coefficient (TIC)
• Amomiya Prediction Criterion (APC)

The MSE is represented as:

∑
+

=

−
+

hs

st
tth

222 )ˆ(
1

1 σσ

 where h is the number of steps ahead, (in this paper h is equal to 1, representing one

step ahead), s the sample size, 2σ̂ the forecasted variance and σ2 is the conditional variance
estimated from equations (3), (4) and (6)..
The MAE is:

∑
+

=

−
+

hs

st
tth

|ˆ|
1

1 22 σσ

The MAPE is represented as:
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The TIC is represented as:
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Theil inequality coefficient is a scale invariant measure that always lies between zero
and one, where zero indicates a perfect fit.
The APC, Amemiya prediction criterion is defined as:

SSE
sks

ksAPC 1
⎟
⎠
⎞

⎜
⎝
⎛

−
+

=

The results of forecasting daily volatility with GARCH models together with various
distributions and five evaluation criteria are given in Table 8. All results are presented
for each distribution and for each stock market. Table 8 reports detailed results about
the forecast accuracy analysis based on classical evaluation criteria. Each section of the
Table refers to a specific stock index, whereas the whole set of evaluation criteria is
applied to each  GARCH models, whose specification is always of order (1,1), and
calculated for each of the three distributions. In this study, the length of the out-of-
sample period was chosen to be 360 days.

MSE is Mean Squared Error, MAE is the Mean Absolute Error, MAPE is the Mean Absolute Percentage
Error, TIC is the Theil Inequality Coefficient, APC is Amemiya Prediction Criterion and R2 is the Amemiya
Adjusted R2.

Table 8: Forecast Performance out-of-  Sample

KLCI STI
    Normal

GARCH EGARCH GJR GARCH EGARCH GJR

MSE 2.0211 0.5938 0.5625 0.5910583 0.1779 0.2945
MAE 0.2933 0.2113 0.2180 0.2445678 0.1906 0.2116
MAPE 12.50454 9.8018 9.9522 13.413375 11.3728 12.0916
TIC 0.1952 0.1581 0.1485 0.2647 0.1811 0.2088
APC 2.38595 0.6632 0.6394 0.5892 0.1788 0.1659
R2 0.94893 0.9646 0.96869 0.89148 0.93582 0.92575

Student-t
GARCH EGARCH GJR GARCH EGARCH GJR

MSE 3.9085 1.4998 1.3143 0.5305 0.2066152 0.2821
MAE 0.4081 0.3110 0.3118 0.2317 0.203192 0.2167
MAPE 16.4260 13.9788 13.5583 12.7713 12.177492 12.4356
TIC 0.2391 0.2345 0.2011 0.2608 0.2002378 0.2108
APC 4.5453 1.6143 1.4630 0.5239 0.2072 0.2833
R2 0.92587 0.92665 0.9552 0.89304 0.92042 0.92251

GED
GARCH EGARCH GJR GARCH EGARCH GJR

MSE 6.0594 1.3041 1.2848 0.5305 0.1877 0.2805
MAE 0.5086 0.2894 0.3041 0.2317 0.1944 0.2123
MAPE 21.2935 13.6436 13.8632 12.7713 11.7055 12.2234
TIC 0.2931 0.2307 0.2067 0.2608 0.1911 0.2097
APC 6.9381 1.4029 1.42064 0.5287 0.1884 0.2818
R2 0.89186 0.92893 0.94298 0.89262 0.92743 0.92387
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Table 9 gives the rank of the GARCH models (when evaluated against each other)
with the three different distributions for the error term. From Tables 8 and 9, some
interesting observations and conclusions emerge.  A first major conclusion from all the
Tables is that there is no single model that completely dominates the other models for
both series. Secondly, forecasting with normal distribution does not yield a significant
reduction of the forecast error relative to the GED and student-t distribution. Thus, the

failure of predictor  2ˆtσ   is justified due to the fact that the GARCH model's residuals
follow a (possibly) heavy-tailed distribution. Third, it seems that asymmetric models
(EGARCH and GJR) with a fatter tailed distribution tend to produce better forecast. It

is apparent that the simple predictor  2ˆtσ   seems to actually have some predictive ability,
when a heavy-tailed is assumed for the GARCH residuals.

A general finding is that the asymmetric models EGARCH and GJR-GARCH model
with heavy-tailed distribution are the best performers while the GARCH model is the
worst. A possible explanation is that modeling asymmetries contributes to the reduction
of the magnitude of the bias. For KLCI, there is an indication that GJR-GARCH model

Table 9: Ranking Forecast Performance

     KLCI STI
          Normal

GARCH EGARCH GJR GARCH EGARCH GJR

MSE 3 2 1 3 1 2
MAE 3 1 2 3 1 2
MAPE 3 1 2 3 1 2
TIC 3 2 1 3 1 2
APC 3 2 1 3 2 1
Total 15 8 7 15 6 9

       Student-t
GARCH EGARCH GJR GARCH EGARCH GJR

MSE 3 2 1 3 1 2
MAE 3 1 2 3 1 2
MAPE 3 2 1 3 1 2
TIC 3 2 1 3 1 2
APC 3 2 1 3 1 2
Total 15 9 6 15 5 10

         GED
GARCH EGARCH GJR GARCH EGARCH GJR

MSE 3 2 1 3 1 2
MAE 3 1 2 3 1 2
MAPE 3 1 2 3 1 2
TIC 3 2 1 3 1 2
APC 3 1 2 3 1 2
Total 15 7 8 15 5 10
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with student-t distribution performs better than EGARCH. However, EGARCH with a
heavy-tailed distribution performed better than GJR model for STI.

Moreover, Table 8 shows that, the R2 is higher when using asymmetric GARCH.
For instance, when using a Student-t distribution, it ranges from 0.927 to 0.946 with the
asymmetric GARCH versus 0.925 with the symmetric GARCH for the KLCI and it
goes from 0.920 to 0.923 versus 0.893 with the symmetric GARCH for the STI. A
description of the fitted and forecasted variance of EGARCH and GJR models is shown
in Figures 5 and 6.
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Fig 5: EGARCH, the fitted and forecasted variance, estimated through 2005 for STI
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Fig 6: GJR, the fitted and forecasted variance, estimated through 2005 for KLCI
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CONCLUSION
The volatility of stock prices has received great attention from both academies and
practitioners over the last two decades because it can be used as a measure of risk in
financial markets. Recent portfolio selection, asset pricing, value at risk, option pricing
and hedging strategies, highlight the importance of modeling and forecasting the
conditional volatility of returns.

This paper contributes to the literature of volatility modeling in two ways. First,
data set was used from an emerging market. Secondly, the alternative ARCH-type models
(symmetric and asymmetric GARCH Models) were estimated. The comparison was
focused on two different aspects: the difference between symmetric and asymmetric
GARCH (i.e., GARCH versus EGARCH and GJR-GARCH) and the difference between
normal tailed symmetric, fat-tailed symmetric distributions (i.e. Normal versus Student-
t and Generalized Error Distribution) for estimating the KLCI and STI stock market
index returns volatility.

The in-sample statistical results indicate that the estimated parameters of the AR(1)-
GJR model, the coefficients of ARCH(α1) and GARCH(β1) in the conditional variance
equation of the AR(1)-GJR in both markets are highly significant with p-value equal to
0.016 and 0.019 for KLCI , 0.017 and 0.020 for STI.

As expected with the results found in various markets, the leverage effect term (w1)
in both KLCI and STI markets, the AR(1)-GJR Model is statistically significant at levels
(p-value equal 0.014 and 0.015 respectively) with a negative sign, which indicate that
negative shocks imply a higher next period conditional variance than positive shocks of
the same sign, indicating that the existence of leverage effect is observed in returns of
the KLCI and STI stock market index.

However, the comparison between models with each density (normal versus non-
normal) shows that, according to the different measures used for the performance of
volatility forecast, the GJR-GARCH model provides the best out-sample estimation for
KLCI and EGARCH model provides the best out-sample estimation for STI, and clearly
the asymmetric models outperform symmetric models. Our results show that noticeable
improvements can be made when using a GARCH model in the conditional variance
(and, among the tested models, EGARCH and GJR seem to outperform GARCH).
Moreover, non-normal distributions provide better in-sample results than the Gaussian
distribution. However, out-of-sample results show less evidence of superior forecasting
ability.

In general, from the results, we can argue that the asymmetric models (GJR and
EGARCH model) coupled with a Student-t distribution for the innovations, performs
very well with the dataset investigated. The models seem to capture the dynamics of the
first and second moments of the KLCI and STI stock market index returns series.
Finally, future research could be directedb at forecasting the volatility of the KLCI and
STI financial time series. First, "true volatility" could be better estimated by selecting
shorter time intervals (for instance, intra-day trading). Second, introducing long run
persistence shocks in the volatility with fractionally integrated models (FIGARCH,
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FIEGARCH, FIAPARCH) would certainly allow better insights into the dynamics of
the series.
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